
Stat 515:
Introduction to Statistics

Chapter 4



Random Variable

• Random Variable – a numerical measurement 
of the outcome of a random phenomena

– Capital letters refer to the random variable

– Lower case letters refer to specific realizations

• Recall our definitions of Discrete and 
Continuous quantitative variables from before



Random Variable

• Discrete Example: Number of goals in an EPL 
soccer match

– We refer to the number of goals in an EPL soccer 
match as X, until we have a concrete observation

– x=2 goals is a realization – a concrete observation



Random Variable

• Continuous Example: Height of Americans

– We refer to the Height of Americans as X, until we 
have a concrete observation

– x=72 inches is a realization – a concrete 
observation



Discrete Distributions!

• Probability Distribution – a summary of all 
possible outcomes of a random phenomena 
along with their probabilities
– Example 1: Number of goals scored in an EPL game

– Example 2&3: Number of red lights on your way to work

– Example 4: Number of free throws made



Random Variable: Discrete

• The possible outcomes must be countable

– Remember quantitative discrete variables from before

• We have a valid discrete probability distribution if

1. Our outcomes are discrete (countable) 

2. All the probabilities are valid

• 0 ≤ 𝑃 𝑥 ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑥

3. We’ve accounted for all possible outcomes

•  𝑃 𝑥 = 1



Example 1: Discrete Distributions
• Example: number of goals 

scored in an EPL soccer 
match

• The number of goals is
countable

• All probabilities are 
between 0 and 1

•  𝑃(𝑥) = .0711 + .1974 +
.2158 + .1842 + .1658 +
.1026 + .0447 + .0105 +
.0026 + .0053 = 1

X = # of Goals P(x) = Probability

0 .0711

1 .1974

2 .2158

3 .1842

4 .1658

5 .1026

6 .0447

7 .0105

8 .0026

9 .0053

TOTAL 1



• Example: Number of red lights on the way to work 
(there are only three red lights on your way to work –
this means you can catch 0,1,2 or 3 lights on your 
way to work.)

• The number of goals is countable

• All probabilities are between 0 and 1

•  𝑃 𝑥 = .10 + .10 + .10 + .40 = .70

• Since  𝑃 𝑥 = .70 ≠ 1 we do not have a valid Discrete Dist.

Example 2: Discrete Distribution

X = Number of lights P(x) = Probability

0 .10

1 .10

2 .10

3 .40



Example 3 Discrete Distributions  
Route 2

• Example: Number of red lights on the way to work (there 
are only three red lights on your way to work – this means 
you can catch 0,1,2 or 3 lights on your way to work.)

• The number of goals is countable
• All probabilities are between 0 and 1

•  𝑃 𝑥 = .40 + .30 + .20 + .10 = 1

X = Number of lights P(x) = Probability

0 .40

1 .30

2 .20

3 .10



Example 3 Discrete Distributions  
Route 2

• Example: Number of red lights on the way to 
work (there are only three red lights on your way 
to work – this means you can catch 0,1,2 or 3 
lights on your way to work.)

• The number of goals is countable
• All probabilities are between 0 and 1

•  𝑃 𝑥 = .20 + .30 + .10 + .40 = 1

X = Number of lights P(x) = Probability

0 .20

1 .30

2 .10

3 .40



Example 4: Discrete Distribution

• Example: Number of free throws made by a 
basketball player in 2 tries

• The number of goals is countable

• All probabilities are between 0 and 1

•  𝑃 𝑥 = .40 + .40 + .20 = 1

X = Number Made P(x) = Probability

0 .40

1 .40

2 .20



The Mean of a Discrete Distribution

• The mean of a probability distribution 
represents the average of a large number of 
observed values. [Remember: in the long run]

• We denote this with the Greek letter as below

𝜇𝑥 = 𝐸 𝑋 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 =  𝑥𝑃(𝑥)



Example 1: Discrete Distributions
• Example: # of goals 
scored in an EPL 
soccer match

• 𝜇𝑥 = 𝐸 𝑥 =
 𝑥 ∗ 𝑃 𝑥 = 0 + .1974 + . 4316 +
.5526 + .6632 + .5130 + .2682 +
.0735 + .0208 + .0477 = 2.768

X = # of 
Goals

P(X) X*P(X)

0 .0711 0*.0711=0

1 .1974 1*.1974=.1974

2 .2158 2*.2158=.4316

3 .1842 3*.1842=.5526

4 .1658 4*.1658=.6632

5 .1026 5*.1026=.5130

6 .0447 6*.0447=.2682

7 .0105 7*.0105=.0735

8 .0026 8*.0026=.0208

9 .0053 9*.0053=.0477

TOTAL 1 2.768



Example 1: Discrete Distributions

• Example: # of goals scored in an EPL soccer 
match

• 𝜇𝑥 = 𝐸 𝑥 =
 𝑥 ∗ 𝑃 𝑥 = 0 + .1974 + . 4316 + .5526 +
.6632 + .5130 + .2682 + .0735 + .0208 +
.0477 = 2.768

• We like to write the interpretation in 
reasonable terms
– “On average, we expect between two and three 

goals in an EPL soccer match”



Example 2 Discrete Distributions  
Comparing Routes: Route 1

• 𝐸 𝑋 =  𝑥𝑃 𝑥 = 0 + .3 + .4 + .3 = 1

• “On average, we expect that Route 1 will result in 
hitting one red light”

X = Number
of lights

P(X) X*P(X)

0 .40 0*.40=0

1 .30 1*.30=.30

2 .20 2*.20=.40

3 .10 3*.10=.30



Example 3 Discrete Distributions  
Comparing Routes: Route 2

• 𝐸 𝑋 =  𝑥𝑃 𝑥 =0 + .30 + .20 + 1.20 = 1.7

• “On average, we expect that Route 2 will result in 
hitting between one and two red lights”

X = Number
of lights

P(X) X*P(X)

0 .20 0*.20=0

1 .30 1*.30=.30

2 .10 2*.10=.20

3 .40 3*.40=1.20



Example 2&3 Discrete Distributions  
Comparing Routes

• Route 1

– 𝐸 𝑋 =  𝑥𝑃 𝑥 = 1

• Route 2

– 𝐸 𝑋 =  𝑥𝑃 𝑥 = 1.7

• Route 2 will result in more lights on average



Example 4: Discrete Distribution

• Example: Number of free throws made by a 
basketball player in 2 tries

• 𝜇𝑥 = 𝐸 𝑥

=  𝑥 ∗ 𝑃 𝑥 = 0 + .40 + .40 = .80

• “On average, we expect between zero and 
one free throw in two tries”

X = Number Made P(x) = Probability x*P(x)

0 .40 0*.40 = 0

1 .40 1*.40 = .40

2 .20 2*.20 = .40



The Variance of a Discrete Distribution

• The variance of a probability distribution 
represents the spread of observed values. It is 
calculated by finding the expected squared 
distance from the mean

• We denote this with the Greek letter as below

𝜎𝑥
2 = 𝐸 𝑋 − 𝜇 2 = 𝑥 − 𝜇 2 ∗ 𝑃(𝑥)



The Standard Deviation of a Discrete 
Distribution

• The standard deviation of a probability 
distribution represents the spread of observed 
values. It is calculated by finding the square 
root of the variance.

• We denote this with the Greek letter as below

𝜎𝑥 = 𝜎𝑥
2
=  𝑥 − 𝜇 2 ∗ 𝑃(𝑥)



Example 1: Discrete Distributions
• Example: # of goals scored in an EPL soccer match

X = # 
Goals

P(x) 𝑋 − 𝜇 2 𝑋 − 𝜇 2 ∗ P X

0 .0711 (0 − 2.768)2 = 7.6618 .5448

1 .1974 (1 − 2.768)2 = 3.1258 .6170

2 .2158 (2 − 2.768)2 = .5898 .1273

3 .1842 (3 − 2.768)2 = .0538 .0099

4 .1658 (4 − 2.768)2 = 1.5178 .2517

5 .1026 (5 − 2.768)2 = 4.9818 .5111

6 .0447 (6 − 2.768)2 = 10.4458 .4669

7 .0105 (7 − 2.768)2 = 17.9098 .1881

8 .0026 (8 − 2.768)2 = 27.3738 .0712

9 .0053 (9 − 2.768)2 = 38.8378 .2058



Example 1: Discrete Distributions

• 𝜎𝑥
2 =  𝑥 − 𝜇 2 ∗ 𝑃(𝑥) = .5448 + .6170 +
.1273 + .0099 + .2517 + .5111 + .4669 +
.1881 + .0712 + 20.56 = 2.9938

• 𝜎𝑥 = 2.9938 = 1.7303



Example 2 Discrete Distributions  
Comparing Routes: Route 1

• 𝜎𝑥
2 =  𝑥 − 𝜇 2 ∗ 𝑃(𝑥) = .4 + .2 + .4 = 1

• 𝜎𝑥 = 1 = 1

X = # of 
lights

P(x) 𝑋 − 𝜇 2 𝑋 − 𝜇 2 ∗ P X

0 .40 (0 − 1)2 = 1 .40

1 .30 (1 − 1)2 = 0 0

2 .20 (2 − 1)2 = 1 .20

3 .10 (3 − 1)2 = 4 .40



Example 3 Discrete Distributions  
Comparing Routes: Route 2

• 𝜎𝑥
2 =  𝑥 − 𝜇 2 ∗ 𝑃(𝑥) = .2 + 0 + .1 + 1.6 = 1.9

• 𝜎𝑥 = 1.9 = 1.3784

X = # of 
lights

P(x) 𝑋 − 𝜇 2 𝑋 − 𝜇 2 ∗ P X

0 .20 (0 − 1)2 = 1 .20

1 .30 (1 − 1)2 = 0 0

2 .10 (2 − 1)2 = 1 .10

3 .40 (3 − 1)2 = 4 1.60



Example 2&3 Discrete Distributions  
Comparing Routes

• Route 1

– 𝐸 𝑋 =  𝑥𝑃 𝑥 = 1

– 𝜎𝑥 = 1

• Route 2
– 𝐸 𝑋 =  𝑥𝑃 𝑥 = 1.7

– 𝜎𝑥 = 1.3784

• Route 2 will result in more lights on average

• Route 2 also has a larger spread



Example 4: Discrete Distribution

• Example: Number of free throws made by a 
basketball player in 2 tries

• 𝜎𝑥
2 =  𝑥 − 𝜇 2 ∗ 𝑃(𝑥) = .4 + 0 + .2 = .60

• 𝜎𝑥 = .60 = 77.46

X = # 
made

P(x) 𝑋 − 𝜇 2 𝑋 − 𝜇 2 ∗ P X

0 .40 (0 − 1)2 = 1 .40

1 .40 (1 − 1)2 = 0 0

2 .20 (2 − 1)2 = 1 .20



Discrete Distribution

• Note that for all of these variables we have 
found the mean and standard deviation

• Knowing these values we can look at a graph 
of the distribution, x vs. P(x), and use either 
Chebyshev’s Rule or the Empirical Rule 
depending on its shape



Example 1

• This is bell-shaped but it is a bit skewed so we 
would use Chebyshev’s rule in this case



Example 2

• This is not bell-shaped so we would use 
Chebyshev’s rule in this case



Example 3

• This is not bell-shaped so we would use 
Chebyshev’s rule in this case



Example 4

• This is not bell-shaped so we would use 
Chebyshev’s rule in this case



Discrete Distribution

numGoals<-0:9
prb_numGoals<-c()
plot(numGoals,prb_numGoals,type="h")

numlights<-0:3
prb_numlights<-c(.4,.3,.2,.1)
prb_numlights2<-c(.2,.3,.1,.4)
plot(numlights,prb_numlights,type="h")
plot(numlights,prb_numlights2,type="h")

numshots<-0:2
prb_numshots<-c(.4,.4,.2)
plot(numshots,prb_numshots,type="h")



A Special Discrete Distribution: 
The Binomial Distribution

• We look at a categorical variable with two 
outcomes 

– We consider one a success and zero a failure

x P(x)

Success (denoted as 1) This is what we’re 
interested in, even if it isn’t 
particularly successful in the 
sense of the English word

p = Probability of a ‘success’

Failure (denoted as 0) This is the other case –
what we aren’t interested in 
,even if it isn’t particularly a 
failure in the sense of the 
English word

q = Probability of a ‘failure’
= 1- p



The Binomial Distribution

• The Binomial Distribution Assumptions

1. It consists of n trials with binary output

• They are denoted 1 or 0, or success and failure

2. The probability of success on each trial is the same

• The trials are identical

3. The outcome of one trial does not affect the 
outcome of another trial

• The trials are independent

4. The binomial random variable x is the number of 
times we see a success in n trials



The Binomial Distribution: Notation

• n = the number of trials

• p = the probability of success for any given 
trial (this will be the same for every trial)

• q = the probability of failure for any given trial
• By complement rule: q = 1 - p

• X = the number of successes for n trials

• X is the random variable, n and p are 
parameters; x will be the observation



Binomial Formula

• 𝑃 𝑋 = 𝑥 = 𝑛
𝑥
𝑝𝑥𝑞𝑛−𝑥 =

𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• Recall: n! = n*(n-1)*(n-2)*…*2*1

– Examples

• 5! = 5*4*3*2*1=120

• 0!=1

• 5!/3!= 5*4



Binomial Calculations in R

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥= dbinom(x,n,p)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
pbinom(n, p, x)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − pbinom(x, n, p)



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=10, p=.5 : Bell shaped, but there’s empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=15, p=.5 : Bell shaped, but there’s still empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=20, p=.5 : Bell shaped, but there’s still empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=25, p=.5 : Bell shaped, but there’s still empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=30, p=.5 : Bell shaped, but there’s still empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=100, p=.5 : Bell shaped, but there’s still empty space



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• n=1000, p=.5 : Bell shaped, and space is negligible



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• We will say that the binomial is bell-shaped if 
𝑛 ∗ 𝑝 ≥ 15 𝐴𝑁𝐷 𝑛 ∗ 1 − 𝑝 ≥ 15

• We will say that the binomial is not bell-shaped if either
𝑛 ∗ 𝑝 < 15 𝑂𝑅 𝑛 ∗ 1 − 𝑝 < 15



Shape of Binomial for Graphs

n p n*p n*(1-p) Bell-Shaped?

10 .5 10*.5 = 5 < 15 10*(1-.5) = 5 < 15 No

15 .5 15*.5 = 7.5 < 15 15*(1-.5) = 7.5 < 15 No

20 .5 20*.5 = 10 < 15 20*(1-.5) = 10 < 15 No

25 .5 25*.5 = 12.5 < 15 25*(1-.5) = 12.5 < 15 No

30 .5 30*.5 = 15 ≥ 15 30*(1-.5) = 15≥ 15 Yes

100 .5 100*.5 = 50 ≥ 15 100*(1-.5) = 50≥ 15 Yes

1000 .5 1000*.5 = 500≥ 15 1000*(1-.5) = 500≥ 15 Yes



Shape of More Complicated Binomials

n p n*p n*(1-p) Bell-Shaped?

10 .25 10*.25 = 2.5 < 15 10*(1-.25) = 7.5 < 15 No

15 .25 15*.25 = 3.75 < 15 15*(1-.25) = 11.25 < 15 No

20 .25 20*.25 = 5 < 15 20*(1-.25) = 15≥ 15 No

25 .25 25*.25 = 6.25 < 15 25*(1-.25) = 18.75 ≥ 15 No

30 .25 30*.25 = 7.5 < 15 30*(1-.25) = 22.5 ≥ 15 No

100 .25 100*.25 = 25 ≥ 15 100*(1-.25) = 75 ≥ 15 Yes

1000 .25 1000*.25 = 250≥ 15 1000*(1-.25) = 750 ≥ 15 Yes



Shape of a binomial

• For fixed p, as the sample size increases the 
probability distribution of X becomes bell 
shaped.

 We consider n to be large enough when 

 𝑛 ∗ 𝑝 > 15 𝐴𝑁𝐷 n ∗ 1 − 𝑝 ≥ 10

 This will be very important as we transition to 
inferential statistics.



What Sample Size Do I Need?

• Say we have that the probability of a success is 
.45, i.e. p=.45. What sample size would we 
need to have to say that the binomial is bell-
shaped?

AND

• So, in order for both to be bigger than or 
equal to 15 we would need 𝑛 ≥ 34

𝑛𝑝 ≥ 15
𝑛 .45 ≥ 15

𝑛 ≥
15

.45
𝑛 ≥ 33.3333

𝑛(1 − 𝑝) ≥ 15
𝑛 1 − .45 ≥ 15
𝑛 .55 ≥ 15

𝑛 ≥
15

.55
𝑛 ≥ 27.2727



Binomial Experiment – Example 1

• The two New England natives who founded 
Portland Oregon, Asa Lovejoy of Boston and 
Francis Pettygrove of Portland, Maine, both 
wanted to name the new city after their 
respective hometowns

• They decided to make the decision based on a 
best two-out-of-three coin toss.

• Let’s say Pettygrove chose heads



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times
– Let X be the number of heads that occur

– n = 3

– p = .50

– q = 1 - p = 1 - .50 =.50

• Trials are identical – we flip the same coin 
each time

• Trials are independent as the outcome of one 
trial doesn’t affect another



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times

– Let X be the number of heads that occur

– n = 3

– p = .50

– q = 1 - p = 1 - .50 =.50

– 𝑛𝑝 = 3 ∗ .5 = 1.5 < 15 and 
𝑛 1 − 𝑝 = 3 ∗ 1 − .5 = 1.5 < 15

– Because 𝑛𝑝 < 15 𝑎𝑛𝑑 𝑛 1 − 𝑝 < 15 we cannot 
say that the binomial is bell-shaped



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times

– Because 𝑛𝑝 < 15 𝑎𝑛𝑑 𝑛 1 − 𝑝 < 15 we cannot 
say that the binomial is bell-shaped



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times
– Let X be the number of heads that occur

– n = 3, p = .50, q =.50

– Find the probability that there are exactly 2 heads

P X = 2 =
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑝𝑥𝑞𝑛−𝑥

=
3!

2! 3 − 2 !
(.5)2(.5)3−2=

3!

2! ∗ 1!
(. 5)2(. 5)1

=
3∗2∗1

2∗1 ∗(1)
.25 .5

= .375 = 𝑑𝑏𝑖𝑛𝑜𝑚(2,3, .5)



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times
P X = 2 = .375



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times

– Let X be the number of heads that occur

– n = 3, p = .50, q =.50

– Find the probability that there are exactly 3 heads

P X = 3 =
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑝𝑥𝑞𝑛−𝑥

=
3!

3! 3 − 3 !
(.5)3(.5)3−3=

3!

3! ∗ 0!
(. 5)3(. 5)0

=
3∗2∗1

3∗2∗1
.125 1

=.125 = 𝑑𝑏𝑖𝑛𝑜𝑚(3,3, . 5)



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times
P X = 3 = .125



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times

– Let X be the number of heads that occur

– n = 3, p = .50, q =.50

– Find the probability that Pettygrove wins

• i.e. Find the probability that there are at least 2 heads

P X ≥ 2 = 𝑃 𝑋 = 2 + 𝑃 𝑋 = 3 = .375 + .125 = .5

OR Using Complement Rule
P X ≥ 2 = 1 − 𝑃 𝑋 < 2

= 1 − 𝑃 𝑋 = 1 + 𝑃 𝑋 = 0

= 1 − 𝑃(𝑋 ≤ 1)
= 1 − 𝑝𝑏𝑖𝑛𝑜𝑚(1,3, .5)



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times
P X ≥ 2 = .5



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times

– Let X be the number of heads that occur

– n = 3, p = .50, q =.50

– Find the probability that Pettygrove loses(there 
are less than 2 heads)
P X < 2 = 1 − P X ≥ 2

= 1 − 𝑃 𝑋 = 2 + 𝑃 𝑋 = 3 = 1 − .5 = .5

OR Using Complement Rule
𝑃 𝑋 < 2 = 𝑃 𝑋 = 1 + 𝑃 𝑋 = 0 = 𝑃(𝑋 ≤ 1)
= 𝑝𝑏𝑖𝑛𝑜𝑚 1,3, . 5 = .5



Binomial Experiment - Example 1

• A fair one-cent piece is flipped three times
P X < 2 = .5



Binomial Experiment - Example 1

• The probability that Pettygrove wins 
P X ≥ 2 = .5

• The probability that Lovejoy wins

P X < 2 = .5

• We see that this is a fair game – they each 
have a 50% chance of winning

• So, why not just flip the coin once?



Binomial Experiment - Example 2

• After looking at some survey data you find 
that the probability that someone rates your 
attractiveness a two or higher is .80. Consider 
a class of 48 students.

• n = 48, p = 0.8, q = 1 - p = 1 – 0.8 = 0.2

• Trials are independent – one student’s 
decision does not affect the others

• Let’s go ahead and assume identical trials 
even though it can be argued that some 
people prefer different things



Binomial Experiment – Example 2

• Consider a class of 48 students.

– Let X be the number of heads that occur

– n = 48, p = 0.8, q = 1 - p = 1 – 0.8 = 0.2

– 𝑛𝑝 = 48 ∗ .8 = 38.4 ≥ 15 and 
𝑛 1 − 𝑝 = 48 ∗ 1 − .8 = 9.6 < 15

– Because 𝑛 1 − 𝑝 < 15 we cannot say that the 
binomial is bell-shaped



Binomial Experiment – Example 2

• Consider a class of 48 students.

– Because 𝑛 1 − 𝑝 < 15 we cannot say that the 
binomial is bell-shaped



Binomial Experiment - Example 2

• Consider a class of 48 students.
• n = 48, p = 0.8, q = 1 - p = 1 – 0.8 = 0.2
• The probability that exactly half of the 48 

students think you were at least a two out of ten

P X = 24 =
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑝𝑥𝑞𝑛−𝑥

=
48!

24! 48 − 24 !
.8 24(.2)48−24=

48!

24! 24!
(.8)24 (.2)24

= .00000255= 𝑑𝑏𝑖𝑛𝑜𝑚(24,48, .8)

• This is an almost impossible event – we expect 
half of the class to think you were at least a two 
out of ten almost 0% of the time



Binomial Experiment - Example 2

• Consider a class of 48 students.
P X = 24 = .00000255

(Not visible because the probability is so small)



Binomial Experiment - Example 2

• Consider a class of 48 students.

• n = 48, p = 0.8, q = 1 - p = 1 – 0.8 = 0.2

• The probability that at least one of the students 
in your class think you were at least a two out of 
ten
P X ≥ 1 = 𝑃 𝑋 = 1 + 𝑃 𝑋 = 2 +. . . 𝑃 𝑋 = 48
= 1 − 𝑃 𝑋 = 0 = 1 − 𝑑𝑏𝑖𝑛𝑜𝑚 0,48, .8
= .999999999…

• This is an almost certain event – we expect at 
least half of the class to think you were at least a 
two out of ten more than 99% of the time



Binomial Experiment - Example 2

• Consider a class of 48 students.
P X ≥ 1 = .999999999…



Mean and Variance For A Binomial

• So far we have found probabilities for the 
binomial distribution. This gave us the ability to 
check the feasibility of certain outcomes or 
groups of outcomes.

• Here, we find what to expect!

• Expected Value = E(X) = Mean = 𝛍𝑥 = 𝑛 ∗ 𝑝

• Variance = 𝜎𝒙
𝟐 = 𝑛 ∗ 𝑝 ∗ 𝑞

• Standard Deviation = 𝜎𝒙 = 𝑛 ∗ 𝑝 ∗ 𝑞



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times

– Let X be the number of heads that occur

– n = 3

– p = .50

– q = 1 - p = 1 - .50 =.50

• 𝑴𝒆𝒂𝒏 = 𝑛 ∗ 𝑝 = 3 ∗ .50 = 1.50

• On average, we expect between 1 and 2 heads in 
three flips



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times

– Let X bet the number of heads that occur

– n = 3

– p = .50

– q = 1 - p = 1 - .50 =.50

• 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = 3 ∗ .50 ∗ .50 = .75



Binomial Experiment – Example 1

• A fair one-cent piece is flipped three times

– Let X bet the number of heads that occur

– n = 3, p = .50, q = .50

• 𝑴𝒆𝒂𝒏 = 𝑛 ∗ 𝑝 = 3 ∗ .50 = 1.50

• 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = 3 ∗ .50 ∗ .50 = .75



Binomial Experiment - Example 2

• Considering a class of 48 students.

• n = 48

• p = 0.8

• q = 1 - p = 1 – 0.8 = 0.2

• 𝑴𝒆𝒂𝒏 = 𝑛 ∗ 𝑝 = 48 ∗ 0.80 = 38

• So, on average we expect about 38 of the 48 
students to think you’re at least a two out of 
ten.



Binomial Experiment - Example 2

• Considering a class of 48 students.

• n = 48

• p = 0.8

• q = 1 - p = 1 – 0.8 = 0.2

• 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = 48 ∗ .80 ∗ .20
= 2.7713



Binomial Experiment - Example 2

• Considering a class of 48 students.

• n = 48, p = 0.8, q = 1 - p = 1 – 0.8 = 0.2

• 𝑴𝒆𝒂𝒏 = 𝑛 ∗ 𝑝 = 48 ∗ 0.80 = 38

• 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = 48 ∗ .80 ∗ .20
= 2.7713

• Since we cannot say this binomial is bell-
shaped we cannot use the empirical rule but 
we can use Chebyshev’s Rule



A Special Discrete Distribution: 
The Poisson Distribution

• The Poisson random variable is for random 
variables that are counts

– Number of traffic accidents at an intersection

– Number of customers

– etc



The Poisson Distribution

• The Poisson Distribution Assumptions
1. It consists of counting the number of times a certain 

event occurs in a given amount of time or in a given 
area

2. The probability an event occurs in a given unit of 
time or space is the same

3. The number of events that occur in a given unit of 
time or space is independent of that in other units 
of time or space

4. The mean is the expected number of events in each 
unit of time or space and is denoted by 𝜆



The Poisson Distribution: Notation

• X = the number of times a certain event 
occurs in a given amount of time or in a given 
area

• 𝜆 = the expected number of times a certain event 
occurs in a given amount of time or in a given 

• X is the random variable, 𝜆 is the parameter



Poisson Formula

• 𝑃 𝑋 = 𝑥 =
(𝜆xe−𝜆)

x!

• Recall: n! = n*(n-1)*(n-2)*…*2*1

• Mean = 𝜆

• Variance = 𝜆



Poisson Calculations in R

• 𝑃 𝑋 = 𝑥 =
(𝜆xe−𝜆)

x!
= dpois(x, 𝜆)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
ppois(x, 𝜆)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − ppois(𝑥, 𝜆)



Example

• A study of the nesting of horse shoe crabs shows 
that the average number of satellites is 2.885 within 
a 50 foot radius of the nest.

• Satellites are extramarital “boyfriends” of female 
horseshoe crabs

• Consider X=number of satellites within a 50 foot 
radius of the nest



Poisson Formula

• Note: 
• X=number of satellites within a 50 foot radius of the nest

• 𝜆 = 2.885

• Mean = 𝜆 = 2.885

• Variance = 𝜆 = 2.885



Poisson Calculations in R

• Note: 
• X=number of satellites within a 50 foot radius of the nest

• 𝜆 = 2.885

• 𝑃 𝑋 = 0 =
(𝜆xe−𝜆)

x!
= dpois(0, 2.885) = .0559

• 𝑃 𝑋 ≤ 2 = P X = 2 + P X = 1 + P X = 0 =
ppois(2, 2.885) = .4494

• 𝑃 𝑋 > 5 = 1 − P X ≤ 5 = 1 − ppois(5, 2.885)=.0728



A Special Discrete Distribution: 
The Hypergeometric Distribution

• The Hypergeometric random variable is for 
the number of successes in n selections

• Similar to the binomial, we’re interested in a 
success/failures

• Here, trials are not independent because sampling is 
done without replacement

• Similar to the Poisson, we’re interested in how 
many successes are in n trials (a count)



The Hypergeometric Distribution

• The Hypergeometric Distribution 
Assumptions

1. It consists of randomly selecting n items without 
replacement from N items, consisting of r 
successes and (N-r) failures

2. The random variable X is the number of 
successes among the n selected items



The Hypergeometric Distribution: 
Notation

• X = the number of successes in n trials of 
dependent trials done without replacement

• N = total number of items to choose from

• r = total number of success items in the N items

• n = the number of items selected

• X is the random variable, N, r, and n are 
parameters of the model



Hypergeometric Formula 

• 𝑃 𝑋 = 𝑥 =
𝑟
𝑥
𝑁−𝑟
𝑛−𝑥
𝑁
𝑛

• Mean = 
𝑛𝑟

𝑁

• Variance = 
𝑟 𝑁−𝑟 𝑛(𝑁−𝑛)

𝑁2(𝑁−1)



Hypergeometric Calculations in R

• 𝑃 𝑋 = 𝑥 =
𝑟
𝑥
𝑁−𝑟
𝑛−𝑥

𝑁
𝑛

= dhyper(x,n,N-r,r)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
phyper(x,n,N−r,r)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − phyper(x,n,N−r,r)



Example

• Suppose we’re playing poker - we randomly obtain 5 cards 
without replacement from an ordinary deck of 52 cards. 

What is the probability of getting exactly 3 hearts 
cards?

• X = the number of successes in n trials of dependent 
trials done without replacement

• N = 52 (total cards)

• r = 13 (total hearts cards)

• n = 5 (our hand)



Hypergeometric Formula 

• 𝑃 𝑋 = 𝑥 =
𝑟
𝑥
𝑁−𝑟
𝑛−𝑥
𝑁
𝑛

• Note:
– N = 52 (total cards)

– r = 13 (total hearts cards)

– n = 5 (our hand)

• Mean = 
𝑛𝑟

𝑁
=
5∗13

52
= 1.25

• Variance = 
𝑟 𝑁−𝑟 𝑛(𝑁−𝑛)

𝑁2(𝑁−1)
=
5∗ 52−13 ∗5∗ 52−5

522∗ 52−1
= .3323



Hypergeometric Calculations in R

• 𝑃 𝑋 = 3 =
𝑟
𝑥
𝑁−𝑟
𝑛−𝑥

𝑁
𝑛

= dhyper(3,13,(52-13),5) = .0815

• 𝑃 𝑋 ≤ 3 = 𝑃 𝑋 = 3 + P X = 2 + P X = 1 + P X = 0
= phyper(3,13,(52−13),5)=.9888

• 𝑃 𝑋 > 3 = 1 − P X ≤ 3
= 1 − phyper(3,13,(52−13),5) = .0112



Summaries



Random Variable: Discrete

• The possible outcomes must be countable

– Remember quantitative discrete variables from before

• We have a valid discrete probability distribution if

1. Our outcomes are discrete (countable) 

2. All the probabilities are valid

• 0 ≤ 𝑃 𝑥 ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑥

3. We’ve accounted for all possible outcomes

•  𝑃 𝑥 = 1



The Mean of a Discrete Distribution

• The mean of a probability distribution 
represents the average of a large number of 
observed values. [Remember: in the long run]

• We denote this with the Greek letter as below

𝜇𝑥 = 𝐸 𝑋 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 =  𝑥𝑃(𝑥)



The Variance of a Discrete Distribution

• The variance of a probability distribution 
represents the spread of observed values. It is 
calculated by finding the expected squared 
distance from the mean

• We denote this with the Greek letter as below

𝜎𝑥
2 = 𝐸 𝑋 − 𝜇 2 = 𝑥 − 𝜇 2 ∗ 𝑃(𝑥)



The Standard Deviation of a Discrete 
Distribution

• The standard deviation of a probability 
distribution represents the spread of observed 
values. It is calculated by finding the square 
root of the variance.

• We denote this with the Greek letter as below

𝜎𝑥 = 𝜎𝑥
2
=  𝑥 − 𝜇 2 ∗ 𝑃(𝑥)



The Binomial Distribution

• The Binomial Distribution Assumptions

1. It consists of n trials with binary output

• They are denoted 1 or 0, or success and failure

2. The probability of success on each trial is the same

• The trials are identical

3. The outcome of one trial does not affect the 
outcome of another trial

• The trials are independent

4. The binomial random variable x is the number of 
times we see a success in n trials



The Binomial Distribution: Notation

• n = the number of trials

• p = the probability of success for any given 
trial (this will be the same for every trial)

• q = the probability of failure for any given trial
• By complement rule: q = 1 - p

• X = the number of successes for n trials

• X is the random variable, n and p are 
parameters; x will be the observation



Binomial Formula

• 𝑃 𝑋 = 𝑥 = 𝑛
𝑥
𝑝𝑥𝑞𝑛−𝑥 =

𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• Recall: n! = n*(n-1)*(n-2)*…*2*1

– Examples

• 5! = 5*4*3*2*1=120

• 0!=1

• 5!/3!= 5*4



Binomial Calculations in R

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥= dbinom(x,n,p)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
pbinom(n, p, x)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − pbinom(x, n, p)



Shape of Binomial

• 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥𝑞𝑛−𝑥

• We will say that the binomial is bell-shaped if 
𝑛 ∗ 𝑝 ≥ 15 𝐴𝑁𝐷 𝑛 ∗ 1 − 𝑝 ≥ 15

• We will say that the binomial is not bell-shaped if either
𝑛 ∗ 𝑝 < 15 𝑂𝑅 𝑛 ∗ 1 − 𝑝 < 15



The Poisson Distribution

• The Poisson Distribution Assumptions
1. It consists of counting the number of times a certain 

event occurs in a given amount of time or in a given 
area

2. The probability an even occurs in a given unit of 
time or space is the same

3. The number of events that occur in a given unit of 
time or space is independent of that in other units 
of time or space

4. The mean is the expected number of events in each 
unit of time or space and is denoted by 𝜆



The Poisson Distribution: Notation

• X = the number of times a certain event 
occurs in a given amount of time or in a given 
area

• 𝜆 = the expected number of times a certain event 
occurs in a given amount of time or in a given 

• X is the random variable, 𝜆 is the parameter



Poisson Formula

• 𝑃 𝑋 = 𝑥 =
(𝜆xe−𝜆)

x!

• Recall: n! = n*(n-1)*(n-2)*…*2*1

• Mean = 𝜆

• Variance = 𝜆



Poisson Calculations in R

• 𝑃 𝑋 = 𝑥 =
(𝜆xe−𝜆)

x!
= dpois(x, 𝜆)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
ppois(x, 𝜆)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − ppois(𝑥, 𝜆)



The Hypergeometric Distribution

• The Hypergeometric Distribution 
Assumptions

1. It consists of randomly selecting n items without 
replacement from N items, consisting of r 
successes and (N-r) failures

2. The random variable X is the number of 
successes among the n selected items



The Hypergeometric Distribution: 
Notation

• X = the number of successes in n trials of 
dependent trials done without replacement

• N = total number of items to choose from

• r = total number of success items in the N items

• n = the number of items selected

• X is the random variable, N, r, and n are 
parameters of the model



Hypergeometric Formula 

• 𝑃 𝑋 = 𝑥 =
𝑟
𝑥
𝑁−𝑟
𝑛−𝑥
𝑁
𝑛

• Mean = 
𝑛𝑟

𝑁

• Variance = 
𝑟 𝑁−𝑟 𝑛(𝑁−𝑛)

𝑁2(𝑁−1)



Hypergeometric Calculations in R

• 𝑃 𝑋 = 𝑥 =
𝑛
𝑥
𝑁−𝑟
𝑛−𝑥

𝑁
𝑛

= dhyper(x,r,N-r,n)

• 𝑃 𝑋 ≤ 𝑥 = P X = x + P X = x − 1 +⋯+ P X = 0 =
phyper(x,r,N−r,n)

• 𝑃 𝑋 > 𝑥 = 1 − P X ≤ x = 1 − phyper(x,r,N−r,n)


