Stat 515: Introduction to Statistics

Chapter 4

Random Variable

- Random Variable a numerical measurement of the outcome of a random phenomena
 - Capital letters refer to the random variable
 - Lower case letters refer to specific realizations

 Recall our definitions of Discrete and Continuous quantitative variables from before

Random Variable

- **Discrete Example:** Number of goals in an EPL soccer match
 - We refer to the number of goals in an EPL soccer match as X, until we have a concrete observation
 - x=2 goals is a realization a concrete observation

Random Variable

- Continuous Example: Height of Americans
 - We refer to the Height of Americans as X, until we have a concrete observation
 - x=72 inches is a realization a concrete observation

Discrete Distributions!

- Probability Distribution a summary of all possible outcomes of a random phenomena along with their probabilities
 - Example 1: Number of goals scored in an EPL game
 - Example 2&3: Number of red lights on your way to work
 - Example 4: Number of free throws made

Random Variable: Discrete

- The possible outcomes must be countable
 - Remember quantitative discrete variables from before
- We have a **valid** discrete probability distribution if
 - 1. Our outcomes are discrete (countable)
 - 2. All the probabilities are valid
 - $0 \le P(x) \le 1$ for all outcomes x
 - 3. We've accounted for all possible outcomes
 - $\sum P(x) = 1$

Example 1: Discrete Distributions

- Example: number of goals scored in an EPL soccer match
- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x) = .0711 + .1974 + .2158 + .1842 + .1658 + .1026 + .0447 + .0105 + .0026 + .0053 = 1$

X = # of Goals	P(x) = Probability
0	.0711
1	.1974
2	.2158
3	.1842
4	.1658
5	.1026
6	.0447
7	.0105
8	.0026
9	.0053
TOTAL	1

Example 2: Discrete Distribution

 Example: Number of red lights on the way to work (there are only three red lights on your way to work – this means you can catch 0,1,2 or 3 lights on your way to work.)

X = Number of lights	P(x) = Probability
0	.10
1	.10
2	.10
3	.40

- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x) = .10 + .10 + .10 + .40 = .70$
- Since $\sum P(x) = .70 \neq 1$ we **do not** have a valid Discrete Dist.

Example 3 Discrete Distributions Route 2

• Example: Number of red lights on the way to work (there are only three red lights on your way to work – this means you can catch 0,1,2 or 3 lights on your way to work.)

X = Number of lights	P(x) = Probability
0	.40
1	.30
2	.20
3	.10

- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x) = .40 + .30 + .20 + .10 = 1$

Example 3 Discrete Distributions

 Route 2
 Example: Number of red lights on the way to work (there are only three red lights on your way to work – this means you can catch 0,1,2 or 3 lights on your way to work.)

X = Number of lights	P(x) = Probability
0	.20
1	.30
2	.10
3	.40

- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x) = .20 + .30 + .10 + .40 = 1$

Example 4: Discrete Distribution

• Example: Number of free throws made by a basketball player in 2 tries

X = Number Made	P(x) = Probability
0	.40
1	.40
2	.20

- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x) = .40 + .40 + .20 = 1$

The Mean of a Discrete Distribution

 The mean of a probability distribution represents the average of a large number of observed values. [Remember: in the long run]

• We denote this with the Greek letter as below $u = E(X) = Expanded and we have of <math>x = \sum x P(x)$

$$u_x = E(X) = Expected value of x = \sum xP(x)$$

Example 1: Discrete Distributions

- **Example**: # of goals scored in an EPL soccer match
- $\mu_x = E(x) =$ $\sum x * P(x) = 0 + .1974 + .4316 +$.5526 + .6632 + .5130 + .2682 + .0735 + .0208 + .0477 = 2.768

X = # of Goals	P(X)	X*P(X)
0	.0711	0*.0711=0
1	.1974	1*.1974=.1974
2	.2158	2*.2158=.4316
3	.1842	3*.1842=.5526
4	.1658	4*.1658=.6632
5	.1026	5*.1026=.5130
6	.0447	6*.0447=.2682
7	.0105	7*.0105=.0735
8	.0026	8*.0026=.0208
9	.0053	9*.0053=.0477
TOTAL	1	2.768

Example 1: Discrete Distributions

- **Example**: # of goals scored in an EPL soccer match
- $\mu_x = E(x) =$ $\sum x * P(x) = 0 + .1974 + .4316 + .5526 +$.6632 + .5130 + .2682 + .0735 + .0208 + .0477 = 2.768
- We like to write the interpretation in reasonable terms
 - "On average, we expect between two and three goals in an EPL soccer match"

Example 2 Discrete Distributions Comparing Routes: Route 1

X = Number of lights	P(X)	X*P(X)
0	.40	0*.40=0
1	.30	1*.30=.30
2	.20	2*.20=.40
3	.10	3*.10=.30

- $E(X) = \sum xP(x) = 0 + .3 + .4 + .3 = 1$
- **"On average, we expect** that Route 1 will result in hitting one red light"

Example 3 Discrete Distributions Comparing Routes: Route 2

X = Number of lights	P(X)	X*P(X)
0	.20	0*.20=0
1	.30	1*.30=.30
2	.10	2*.10=.20
3	.40	3*.40=1.20

- $E(X) = \sum xP(x) = 0 + .30 + .20 + 1.20 = 1.7$
- **"On average, we expect** that Route 2 will result in hitting between one and two red lights"

Example 2&3 Discrete Distributions Comparing Routes

• Route 1

 $-E(X) = \sum xP(x) = 1$

• Route 2

 $-E(X) = \sum x P(x) = 1.7$

• Route 2 will result in more lights on average

Example 4: Discrete Distribution

• Example: Number of free throws made by a basketball player in 2 tries

X = Number Made	P(x) = Probability	x*P(x)
0	.40	0*.40 = 0
1	.40	1*.40 = .40
2	.20	2*.20 = .40

- $\mu_x = E(x)$ = $\sum x * P(x) = 0 + .40 + .40 = .80$
- "On average, we expect between zero and one free throw in two tries"

The Variance of a Discrete Distribution

- The variance of a probability distribution represents the spread of observed values. It is calculated by finding the expected squared distance from the mean
- We denote this with the Greek letter as below

$$\sigma_x^2 = E[(X - \mu)^2] = \sum (x - \mu)^2 * P(x)$$

The Standard Deviation of a Discrete Distribution

 The standard deviation of a probability distribution represents the spread of observed values. It is calculated by finding the square root of the variance.

• We denote this with the Greek letter as below

$$\sigma_x = \sqrt{{\sigma_x}^2} = \sqrt{\sum (x-\mu)^2 * P(x)}$$

Example 1: Discrete Distributions

• Example: # of goals scored in an EPL soccer match

X = # Goals	P(x)	$(X - \mu)^2$	$(X-\mu)^2 * P(X)$
0	.0711	$(0 - 2.768)^2 = 7.6618$.5448
1	.1974	$(1 - 2.768)^2 = 3.1258$.6170
2	.2158	$(2 - 2.768)^2 = .5898$.1273
3	.1842	$(3 - 2.768)^2 = .0538$.0099
4	.1658	$(4 - 2.768)^2 = 1.5178$.2517
5	.1026	$(5 - 2.768)^2 = 4.9818$.5111
6	.0447	$(6 - 2.768)^2 = 10.4458$.4669
7	.0105	$(7 - 2.768)^2 = 17.9098$.1881
8	.0026	$(8 - 2.768)^2 = 27.3738$.0712
9	.0053	$(9 - 2.768)^2 = 38.8378$.2058

Example 1: Discrete Distributions

• $\sigma_x^2 = \sum (x - \mu)^2 * P(x) = .5448 + .6170 + .1273 + .0099 + .2517 + .5111 + .4669 + .1881 + .0712 + 20.56 = 2.9938$

•
$$\sigma_x = \sqrt{2.9938} = 1.7303$$

Example 2 Discrete Distributions Comparing Routes: Route 1

X = # of lights	P(x)	$(X - \mu)^2$	$(X-\mu)^2 * P(X)$
0	.40	$(0-1)^2 = 1$.40
1	.30	$(1-1)^2 = 0$	0
2	.20	$(2-1)^2 = 1$.20
3	.10	$(3-1)^2 = 4$.40

• $\sigma_x^2 = \sum (x - \mu)^2 * P(x) = .4 + .2 + .4 = 1$ • $\sigma_x = \sqrt{1} = 1$

Example 3 Discrete Distributions Comparing Routes: Route 2

X = # of lights	P(x)	$(X - \mu)^2$	$(X - \mu)^2 * P(X)$
0	.20	$(0-1)^2 = 1$.20
1	.30	$(1-1)^2 = 0$	0
2	.10	$(2-1)^2 = 1$.10
3	.40	$(3-1)^2 = 4$	1.60

• $\sigma_x^2 = \sum (x - \mu)^2 * P(x) = .2 + 0 + .1 + 1.6 = 1.9$ • $\sigma_x = \sqrt{1.9} = 1.3784$

Example 2&3 Discrete Distributions Comparing Routes

• Route 1

$$-E(X) = \sum xP(x) = 1$$
$$-\sigma_x = 1$$

• Route 2 - $E(X) = \sum x P(x) = 1.7$

$$-\sigma_{x} = 1.3784$$

- Route 2 will result in more lights on average
- Route 2 also has a larger spread

Example 4: Discrete Distribution

• Example: Number of free throws made by a basketball player in 2 tries

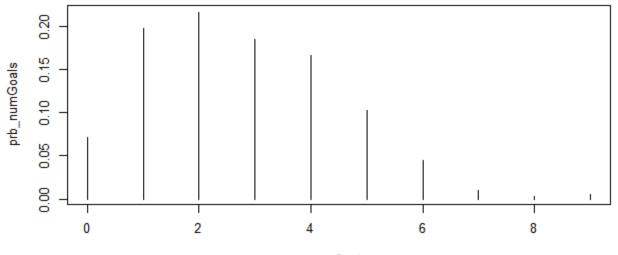
X = # made	P(x)	$(X - \mu)^2$	$(X-\mu)^2 * P(X)$
0	.40	$(0-1)^2 = 1$.40
1	.40	$(1-1)^2 = 0$	0
2	.20	$(2-1)^2 = 1$.20

- $\sigma_x^2 = \sum (x \mu)^2 * P(x) = .4 + 0 + .2 = .60$
- $\sigma_x = \sqrt{.60} = 77.46$

Discrete Distribution

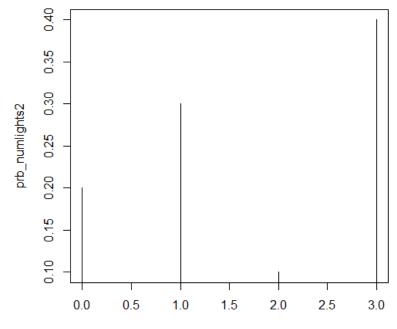
- Note that for all of these variables we have found the mean and standard deviation
- Knowing these values we can look at a graph of the distribution, x vs. P(x), and use either Chebyshev's Rule or the Empirical Rule depending on its shape

 This is bell-shaped but it is a bit skewed so we would use Chebyshev's rule in this case



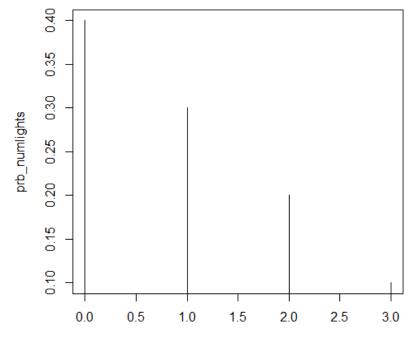
numGoals

 This is not bell-shaped so we would use Chebyshev's rule in this case

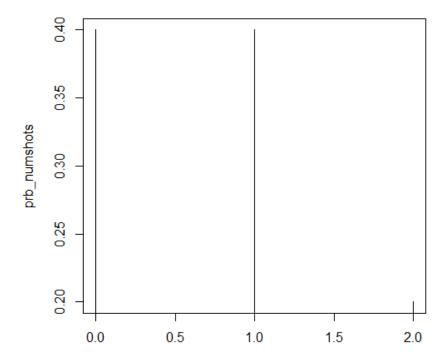


numlights

 This is not bell-shaped so we would use Chebyshev's rule in this case



 This is not bell-shaped so we would use Chebyshev's rule in this case



Discrete Distribution

numGoals<-0:9
prb_numGoals<-c()
plot(numGoals,prb_numGoals,type="h")</pre>

numlights<-0:3
prb_numlights<-c(.4,.3,.2,.1)
prb_numlights2<-c(.2,.3,.1,.4)
plot(numlights,prb_numlights,type="h")
plot(numlights,prb_numlights2,type="h")</pre>

numshots<-0:2
prb_numshots<-c(.4,.4,.2)
plot(numshots,prb_numshots,type="h")</pre>

A Special Discrete Distribution: The Binomial Distribution

- We look at a categorical variable with two outcomes
 - We consider one a success and zero a failure

x		P(x)
Success (denoted as 1)	This is what we're interested in, even if it isn't particularly successful in the sense of the English word	p = Probability of a 'success'
Failure (denoted as 0)	This is the other case – what we aren't interested in ,even if it isn't particularly a failure in the sense of the English word	q = Probability of a 'failure' = 1- p

The Binomial Distribution

- The Binomial Distribution Assumptions
 - 1. It consists of **n trials** with **binary output**
 - They are denoted 1 or 0, or success and failure
 - 2. The probability of success on each trial is the same
 - The trials are **identical**
 - 3. The outcome of one trial does not affect the outcome of another trial
 - The trials are **independent**
 - 4. The binomial random variable x is the number of times we see a success in n trials

The Binomial Distribution: Notation

- **n** = the number of trials
- **p** = the probability of success for any given trial (this will be the same for every trial)
- **q** = the probability of failure for any given trial
 - By complement rule: q = 1 p
- **X** = the number of successes for n trials
- **X** is the random variable, **n** and **p** are parameters; **x** will be the observation

Binomial Formula

•
$$P(X = x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

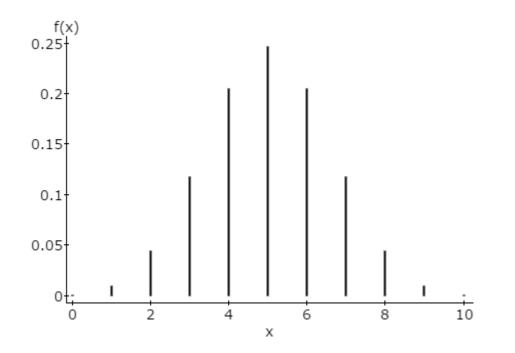
- Recall: n! = n*(n-1)*(n-2)*...*2*1
 - Examples
 - 5! = 5*4*3*2*1=120
 - 0!=1
 - 5!/3!= 5*4

Binomial Calculations in R

- $P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x} = \text{dbinom}(x,n,p)$
- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ pbinom(n, p, x)
- $P(X > x) = 1 P(X \le x) = 1 pbinom(x, n, p)$

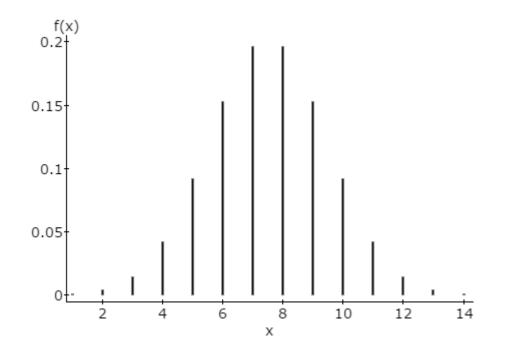
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=10, p=.5 : Bell shaped, but there's empty space



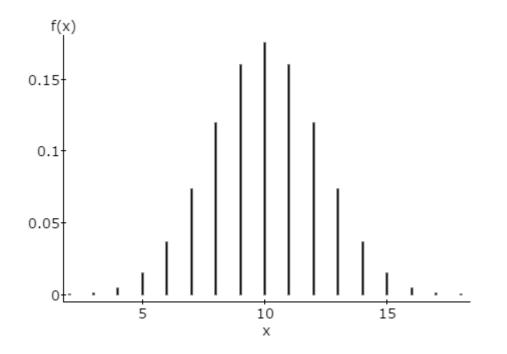
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=15, p=.5 : Bell shaped, but there's still empty space



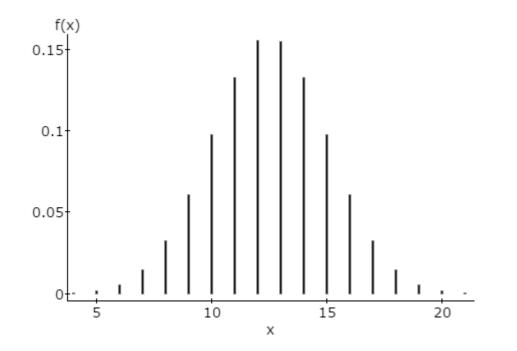
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=20, p=.5 : Bell shaped, but there's still empty space



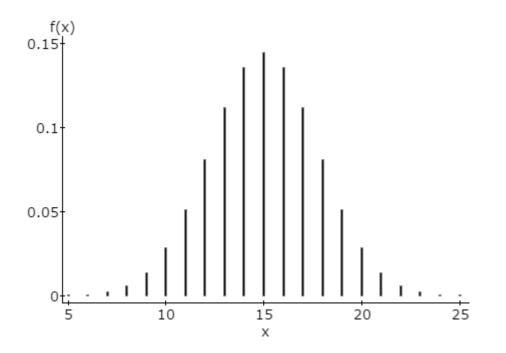
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=25, p=.5 : Bell shaped, but there's still empty space



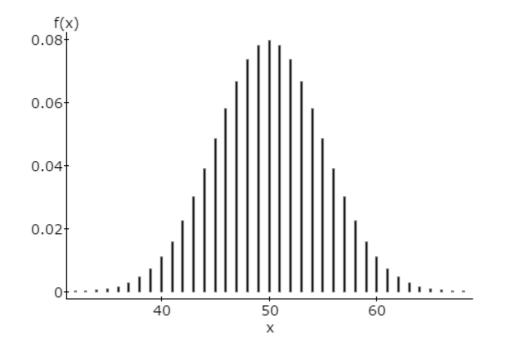
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=30, p=.5 : Bell shaped, but there's still empty space



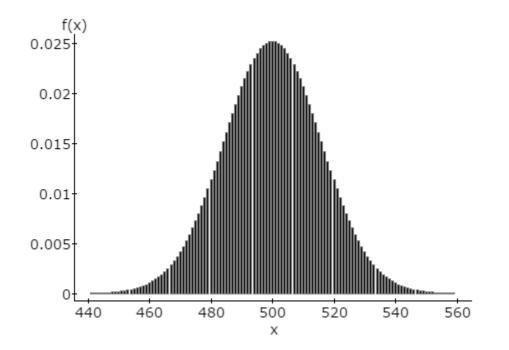
•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=100, p=.5 : Bell shaped, but there's still empty space



•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

• n=1000, p=.5 : Bell shaped, and space is negligible



•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

- We will say that the binomial is bell-shaped if $n * p \ge 15 AND n * (1 p) \ge 15$
- We will say that the binomial is not bell-shaped if either $n * p < 15 \ OR \ n * (1 p) < 15$

Shape of Binomial for Graphs

n	р	n*p	n*(1-p)	Bell-Shaped?
10	.5	10*.5 = 5 < 15	10*(15) = 5 < 15	No
15	.5	15*.5 = 7.5 < 15	15*(15) = 7.5 < 15	No
20	.5	20*.5 = 10 < 15	20*(15) = 10 < 15	No
25	.5	25*.5 = 12.5 < 15	25*(15) = 12.5 < 15	No
30	.5	30 *.5 = 1 5 ≥ 1 5	30*(15) = 15≥ 15	Yes
100	.5	100*.5 = 50 ≥ 15	100*(15) = 50≥ 15	Yes
1000	.5	1000*.5 = 500≥ 15	1000*(15) = 500≥ 15	Yes

Shape of More Complicated Binomials

n	р	n*p	n*(1-p)	Bell-Shaped?
10	.25	10*.25 = 2.5 < 15	10*(125) = 7.5 < 15	No
15	.25	15*.25 = 3.75 < 15	15*(125) = 11.25 < 15	No
20	.25	20*.25 = 5 < 15	20*(125) = 15≥ 15	No
25	.25	25*.25 = 6.25 < 15	25*(125) = 18.75 ≥ 15	No
30	.25	30*.25 = 7.5 < 15	30*(125) = 22.5 ≥ 15	No
100	.25	100*.25 = 25 ≥ 15	100*(125) = 75 ≥ 15	Yes
1000	.25	1000*.25 = 250≥ 15	1000*(125) = 750 ≥ 15	Yes

Shape of a binomial

- For fixed p, as the sample size increases the probability distribution of X becomes bell shaped.
 - We consider n to be large enough when
 - $n * p > 15 AND n * (1 p) \ge 10$
 - This will be very important as we transition to inferential statistics.

What Sample Size Do I Need?

 Say we have that the probability of a success is .45, i.e. p=.45. What sample size would we need to have to say that the binomial is bellshaped?

$np \ge 15$ $n(.45) \ge 15$ 15	<u>AND</u>	$n(1-p) \ge 15$ $n(145) \ge 15$ $n(.55) \ge 15$ 15
$n \ge \frac{1}{.45}$ $n \ge 33.3333$		$n \ge \frac{15}{.55}$ $n \ge 27.2727$

• So, in order for both to be bigger than or equal to 15 we would need $n \ge 34$

- The two New England natives who founded Portland Oregon, Asa Lovejoy of Boston and Francis Pettygrove of Portland, Maine, both wanted to name the new city after their respective hometowns
- They decided to make the decision based on a best two-out-of-three coin toss.
- Let's say Pettygrove chose heads

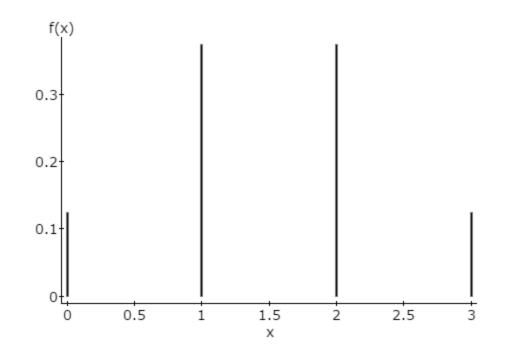
- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur
 - n = 3
 - p = .50
 - -q = 1 p = 1 .50 = .50
- Trials are identical we flip the same coin each time
- Trials are independent as the outcome of one trial doesn't affect another

- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur

– n = 3

- p = .50
- -q = 1 p = 1 .50 = .50
- -np = 3 * .5 = 1.5 < 15 and n(1-p) = 3 * (1 - .5) = 1.5 < 15
- Because np < 15 and n(1-p) < 15 we cannot say that the binomial is bell-shaped

- A fair one-cent piece is flipped three times
 - Because np < 15 and n(1-p) < 15 we cannot say that the binomial is bell-shaped



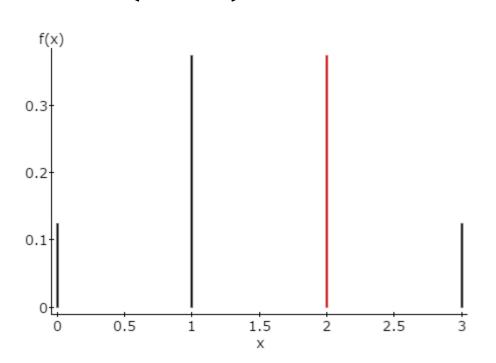
- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur

- Find the probability that there are exactly 2 heads

$$P(X = 2) = \frac{n!}{x! (n - x)!} p^{x} q^{n - x}$$

= $\frac{3!}{2! (3 - 2)!} (.5)^{2} (.5)^{3 - 2} = \frac{3!}{2! * 1!} (.5)^{2} (.5)^{1}$
= $\frac{3 * 2 * 1}{(2 * 1) * (1)} (.25) (.5)$
= .375 = $dbinom(2,3,.5)$

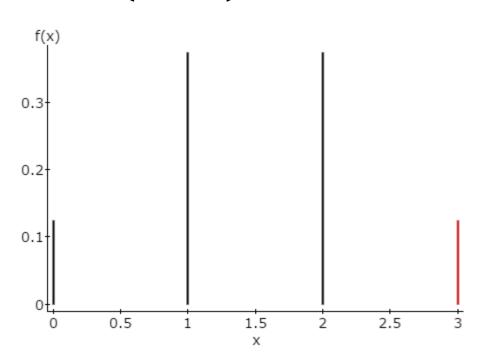
• A fair one-cent piece is flipped three times P(X = 2) = .375



- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur

- Find the probability that there are exactly 3 heads $P(X = 3) = \frac{n!}{x! (n - x)!} p^{x} q^{n - x}$ $= \frac{3!}{3! (3 - 3)!} (.5)^{3} (.5)^{3 - 3} = \frac{3!}{3! * 0!} (.5)^{3} (.5)^{0}$ $= \frac{3 * 2 * 1}{3 * 2 * 1} (.125) (1)$ = .125 = dbinom(3,3,.5)

• A fair one-cent piece is flipped three times P(X = 3) = .125

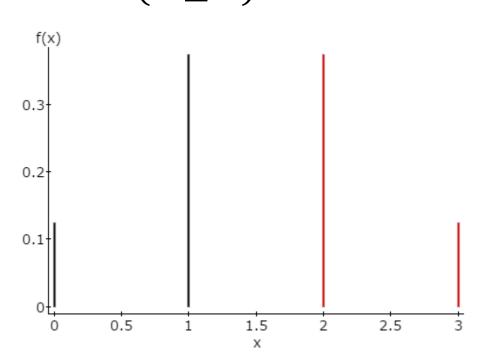


- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur
 - n = 3, p = .50, q =.50
 - Find the probability that Pettygrove wins

• i.e. Find the probability that there are at least 2 heads $P(X \ge 2) = P(X = 2) + P(X = 3) = .375 + .125 = .5$

 $\begin{array}{l} \underline{OR \ Using \ Complement \ Rule} \\ P(X \ge 2) = 1 - P(X < 2) \\ = 1 - \left(P(X = 1) + P(X = 0)\right) \\ = 1 - P(X \le 1) \\ = 1 - pbinom(1,3,.5) \end{array}$

• A fair one-cent piece is flipped three times $P(X \ge 2) = .5$



- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur

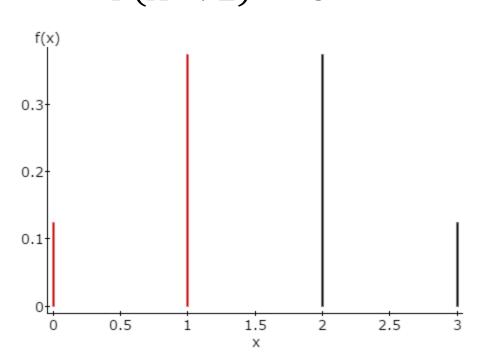
Find the probability that Pettygrove loses(there are less than 2 heads)

$$P(X < 2) = 1 - P(X \ge 2)$$

= 1 - (P(X = 2) + P(X = 3)) = 1 - .5 = .5

$$\frac{OR \ Using \ Complement \ Rule}{P(X < 2) = P(X = 1) + P(X = 0) = P(X \le 1)}$$
$$= pbinom(1,3,.5) = .5$$

• A fair one-cent piece is flipped three times P(X < 2) = .5



- The probability that Pettygrove wins $P(X \ge 2) = .5$
- The probability that Lovejoy wins P(X < 2) = .5
- We see that this is a **fair** game they each have a 50% chance of winning
- So, why not just flip the coin once?

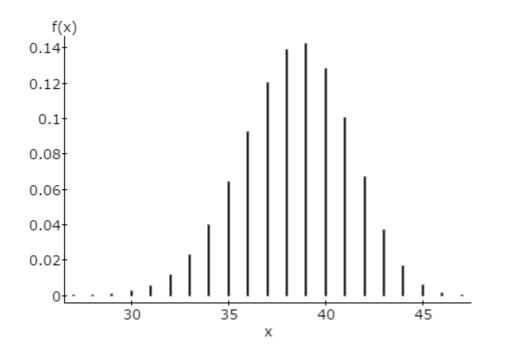
- After looking at some survey data you find that the probability that someone rates your attractiveness a two or higher is .80. Consider a class of 48 students.
- **n = 48**, p = 0.8, q = 1 − p = 1 − 0.8 = 0.2
- Trials are independent one student's decision does not affect the others
- Let's go ahead and assume identical trials even though it can be argued that some people prefer different things

- Consider a class of 48 students.
 - Let X be the number of heads that occur
 - **− n = 48**, p = 0.8, q = 1 − p = 1 − 0.8 = 0.2

$$-np = 48 * .8 = 38.4 \ge 15$$
 and
 $n(1-p) = 48 * (1 - .8) = 9.6 < 15$

– Because n(1-p) < 15 we cannot say that the binomial is bell-shaped

- Consider a class of 48 students.
 - Because n(1-p) < 15 we cannot say that the binomial is bell-shaped



- Consider a class of 48 students.
- n = 48, p = 0.8, q = 1 − p = 1 − 0.8 = 0.2
- The probability that exactly half of the 48 students think you were at least a two out of ten

$$P(X = 24) = \frac{n!}{x! (n - x)!} p^{x} q^{n - x}$$

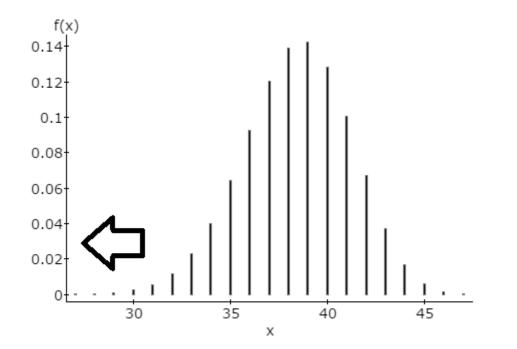
= $\frac{48!}{24! (48 - 24)!} (.8)^{24} (.2)^{48 - 24} = \frac{48!}{24! 24!} (.8)^{24} (.2)^{24}$

= .00000255 = dbinom(24, 48, .8)

 This is an almost impossible event – we expect half of the class to think you were at least a two out of ten almost 0% of the time

• Consider a class of 48 students. P(X = 24) = .00000255

(Not visible because the probability is so small)



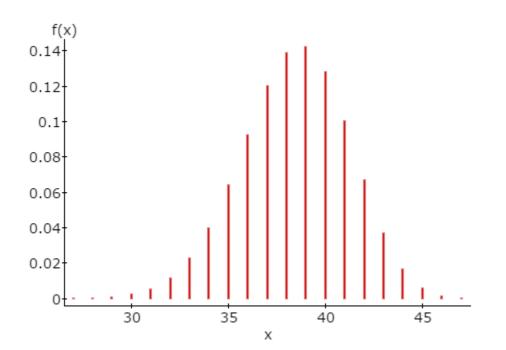
- Consider a class of 48 students.
- n = 48, p = 0.8, q = 1 p = 1 0.8 = 0.2
- The probability that at least one of the students in your class think you were at least a two out of ten

$$P(X \ge 1) = P(X = 1) + P(X = 2) + \dots P(X = 48)$$

= 1 - P(X = 0) = 1 - dbinom(0,48,.8)
= .999999999 ...

 This is an almost certain event – we expect at least half of the class to think you were at least a two out of ten more than 99% of the time

• Consider a class of 48 students. $P(X \ge 1) = .999999999 \dots$



Mean and Variance For A Binomial

- So far we have found probabilities for the binomial distribution. This gave us the ability to check the feasibility of certain outcomes or groups of outcomes.
- Here, we find what to expect!
- Expected Value = E(X) = Mean = $\mu_x = n * p$
- Variance = $\sigma_x^2 = n * p * q$
- Standard Deviation = $\sigma_x = \sqrt{n * p * q}$

- A fair one-cent piece is flipped three times
 - Let X be the number of heads that occur
 - n = 3
 - p = .50
 - -q = 1 p = 1 .50 = .50
- *Mean* = n * p = 3 * .50 = 1.50
- On average, we expect between 1 and 2 heads in three flips

- A fair one-cent piece is flipped three times
 - Let X bet the number of heads that occur
 - n = 3
 - p = .50
 - -q = 1 p = 1 .50 = .50
- *Standard Deviation* = $\sqrt{3} * .50 * .50 = .75$

Binomial Experiment – Example 1

- A fair one-cent piece is flipped three times

 Let X bet the number of heads that occur
 n = 3, p = .50, q = .50
- *Mean* = n * p = 3 * .50 = 1.50
- *Standard Deviation* = $\sqrt{3 * .50 * .50} = .75$

Binomial Experiment - Example 2

- Considering a class of 48 students.
- n = 48
- p = 0.8
- q = 1 p = 1 0.8 = 0.2
- *Mean* = n * p = 48 * 0.80 = 38
- So, on average we expect about 38 of the 48 students to think you're at least a two out of ten.

Binomial Experiment - Example 2

- Considering a class of 48 students.
- n = 48
- p = 0.8
- q = 1 p = 1 0.8 = 0.2
- Standard Deviation = $\sqrt{48 * .80 * .20}$ = 2.7713

Binomial Experiment - Example 2

- Considering a class of 48 students.
- n = 48, p = 0.8, q = 1 − p = 1 − 0.8 = 0.2
- *Mean* = n * p = 48 * 0.80 = 38
- Standard Deviation = $\sqrt{48 * .80 * .20}$ = 2.7713
- Since we cannot say this binomial is bellshaped we cannot use the empirical rule but we can use Chebyshev's Rule

A Special Discrete Distribution: The Poisson Distribution

- The Poisson random variable is for random variables that are counts
 - Number of traffic accidents at an intersection
 - Number of customers
 - etc

The Poisson Distribution

- The Poisson Distribution Assumptions
 - 1. It consists of **counting the number of times** a certain event occurs in a given amount of time or in a given area
 - 2. The probability an event occurs in a given unit of time or space is the same
 - 3. The number of events that occur in a given unit of time or space is independent of that in other units of time or space
 - 4. The mean is the expected number of events in each unit of time or space and is denoted by λ

The Poisson Distribution: Notation

- X = the number of times a certain event occurs in a given amount of time or in a given area
- λ = the expected number of times a certain event occurs in a given amount of time or in a given
- **X** is the random variable, λ is the parameter

Poisson Formula

•
$$P(X = x) = \frac{(\lambda^{x} e^{-\lambda})}{x!}$$

• Recall: n! = n*(n-1)*(n-2)*...*2*1

- Mean = λ
- Variance = λ

Poisson Calculations in R

•
$$P(X = x) = \frac{(\lambda^{x} e^{-\lambda})}{x!} = dpois(x, \lambda)$$

- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ ppois(x, λ)
- $P(X > x) = 1 P(X \le x) = 1 ppois(x, \lambda)$

Example

- A study of the nesting of horse shoe crabs shows that the average number of satellites is 2.885 within a 50 foot radius of the nest.
 - Satellites are extramarital "boyfriends" of female horseshoe crabs
- Consider X=number of satellites within a 50 foot radius of the nest

Poisson Formula

- Note:
 - X=number of satellites within a 50 foot radius of the nest
 - $\lambda = 2.885$

- Mean = λ = 2.885
- Variance = $\lambda = 2.885$

Poisson Calculations in R

- Note:
 - X=number of satellites within a 50 foot radius of the nest
 - $\lambda = 2.885$

•
$$P(X = 0) = \frac{(\lambda^{x} e^{-\lambda})}{x!} = dpois(0, 2.885) = .0559$$

- $P(X \le 2) = P(X = 2) + P(X = 1) + P(X = 0) =$ ppois(2, 2.885) = .4494
- $P(X > 5) = 1 P(X \le 5) = 1 ppois(5, 2.885) = .0728$

A Special Discrete Distribution: The Hypergeometric Distribution

- The Hypergeometric random variable is for the number of successes in n selections
- Similar to the binomial, we're interested in a success/failures
 - Here, trials are not independent because sampling is done without replacement
- Similar to the Poisson, we're interested in how many successes are in n trials (a count)

The Hypergeometric Distribution

- The Hypergeometric Distribution Assumptions
 - It consists of randomly selecting n items without replacement from N items, consisting of r successes and (N-r) failures
 - 2. The random variable X is the number of successes among the n selected items

The Hypergeometric Distribution: Notation

- X = the number of successes in n trials of dependent trials done without replacement
- N = total number of items to choose from
- r = total number of success items in the N items
- n = the number of items selected
- X is the random variable, N, r, and n are parameters of the model

Hypergeometric Formula

•
$$P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

• Mean =
$$\frac{nr}{N}$$

• Variance =
$$\frac{r(N-r)n(N-n)}{N^2(N-1)}$$

Hypergeometric Calculations in R

•
$$P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} = dhyper(x,n,N-r,r)$$

- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ phyper(x,n,N-r,r)
- $P(X > x) = 1 P(X \le x) = 1 phyper(x,n,N-r,r)$

Example

- Suppose we're playing poker we randomly obtain 5 cards without replacement from an ordinary deck of 52 cards.
 What is the probability of getting exactly 3 hearts cards?
- **X** = the number of successes in n trials of dependent trials done without replacement
- N = 52 (total cards)
- r = 13 (total hearts cards)
- n = 5 (our hand)

Hypergeometric Formula

•
$$P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

- Note:
 - N = 52 (total cards)
 - r = 13 (total hearts cards)
 - n = 5 (our hand)

• Mean =
$$\frac{nr}{N} = \frac{5*13}{52} = 1.25$$

• Variance = $\frac{r(N-r)n(N-n)}{N^2(N-1)} = \frac{5*(52-13)*5*(52-5)}{52^2*(52-1)} = .3323$

Hypergeometric Calculations in R

•
$$P(X = 3) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} = \text{dhyper}(3,13,(52-13),5) = .0815$$

- $P(X \le 3) = P(X = 3) + P(X = 2) + P(X = 1) + P(X = 0)$ = phyper(3,13,(52-13),5)=.9888
- $P(X > 3) = 1 P(X \le 3)$ = 1 - phyper(3,13,(52-13),5) = .0112

Summaries

Random Variable: Discrete

- The possible outcomes must be countable
 - Remember quantitative discrete variables from before
- We have a **valid** discrete probability distribution if
 - 1. Our outcomes are discrete (countable)
 - 2. All the probabilities are valid
 - $0 \le P(x) \le 1$ for all outcomes x
 - 3. We've accounted for all possible outcomes
 - $\sum P(x) = 1$

The Mean of a Discrete Distribution

 The mean of a probability distribution represents the average of a large number of observed values. [Remember: in the long run]

• We denote this with the Greek letter as below $u = E(X) = Expanded and we have of <math>x = \sum x P(x)$

$$u_x = E(X) = Expected value of x = \sum xP(x)$$

The Variance of a Discrete Distribution

- The variance of a probability distribution represents the spread of observed values. It is calculated by finding the expected squared distance from the mean
- We denote this with the Greek letter as below

$$\sigma_x^2 = E[(X - \mu)^2] = \sum (x - \mu)^2 * P(x)$$

The Standard Deviation of a Discrete Distribution

 The standard deviation of a probability distribution represents the spread of observed values. It is calculated by finding the square root of the variance.

• We denote this with the Greek letter as below

$$\sigma_x = \sqrt{{\sigma_x}^2} = \sqrt{\sum (x-\mu)^2 * P(x)}$$

The Binomial Distribution

- The Binomial Distribution Assumptions
 - 1. It consists of **n trials** with **binary output**
 - They are denoted 1 or 0, or success and failure
 - 2. The probability of success on each trial is the same
 - The trials are **identical**
 - 3. The outcome of one trial does not affect the outcome of another trial
 - The trials are **independent**
 - 4. The binomial random variable x is the number of times we see a success in n trials

The Binomial Distribution: Notation

- **n** = the number of trials
- **p** = the probability of success for any given trial (this will be the same for every trial)
- **q** = the probability of failure for any given trial
 - By complement rule: q = 1 p
- **X** = the number of successes for n trials
- **X** is the random variable, **n** and **p** are parameters; **x** will be the observation

Binomial Formula

•
$$P(X = x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

- Recall: n! = n*(n-1)*(n-2)*...*2*1
 - Examples
 - 5! = 5*4*3*2*1=120
 - 0!=1
 - 5!/3!= 5*4

Binomial Calculations in R

- $P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x} = \text{dbinom}(x,n,p)$
- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ pbinom(n, p, x)
- $P(X > x) = 1 P(X \le x) = 1 pbinom(x, n, p)$

Shape of Binomial

•
$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

- We will say that the binomial is bell-shaped if $n * p \ge 15 AND n * (1 p) \ge 15$
- We will say that the binomial is not bell-shaped if either $n * p < 15 \ OR \ n * (1 p) < 15$

The Poisson Distribution

- The Poisson Distribution Assumptions
 - 1. It consists of **counting the number of times** a certain event occurs in a given amount of time or in a given area
 - 2. The probability an even occurs in a given unit of time or space is the same
 - 3. The number of events that occur in a given unit of time or space is independent of that in other units of time or space
 - 4. The mean is the expected number of events in each unit of time or space and is denoted by λ

The Poisson Distribution: Notation

- X = the number of times a certain event occurs in a given amount of time or in a given area
- λ = the expected number of times a certain event occurs in a given amount of time or in a given
- **X** is the random variable, λ is the parameter

Poisson Formula

•
$$P(X = x) = \frac{(\lambda^{x} e^{-\lambda})}{x!}$$

• Recall: n! = n*(n-1)*(n-2)*...*2*1

- Mean = λ
- Variance = λ

Poisson Calculations in R

•
$$P(X = x) = \frac{(\lambda^{x} e^{-\lambda})}{x!} = dpois(x, \lambda)$$

- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ ppois(x, λ)
- $P(X > x) = 1 P(X \le x) = 1 ppois(x, \lambda)$

The Hypergeometric Distribution

- The Hypergeometric Distribution Assumptions
 - It consists of randomly selecting n items without replacement from N items, consisting of r successes and (N-r) failures
 - 2. The random variable X is the number of successes among the n selected items

The Hypergeometric Distribution: Notation

- X = the number of successes in n trials of dependent trials done without replacement
- N = total number of items to choose from
- r = total number of success items in the N items
- n = the number of items selected
- X is the random variable, N, r, and n are parameters of the model

Hypergeometric Formula

•
$$P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

• Mean =
$$\frac{nr}{N}$$

• Variance =
$$\frac{r(N-r)n(N-n)}{N^2(N-1)}$$

Hypergeometric Calculations in R

•
$$P(X = x) = \frac{\binom{n}{x}\binom{N-r}{n-x}}{\binom{N}{n}} = dhyper(x,r,N-r,n)$$

- $P(X \le x) = P(X = x) + P(X = x 1) + \dots + P(X = 0) =$ phyper(x,r,N-r,n)
- $P(X > x) = 1 P(X \le x) = 1 phyper(x,r,N-r,n)$